Sharp Boundary Estimates for Elliptic Operators
نویسنده
چکیده
L 2 boundary decay properties of the heat kernel and spectral density. We deduce bounds on the rate of convergence of the eigenvalues when the region is slightly reduced in size. It is remarkable that several of the bounds do not involve the space dimension. AMS subject classifications: 35P99, 35P20, 47A75, 47B25 keywords: boundary decay, Laplacian, Hardy inequality, eigenfunctions, heat kernel, spectral density, spectral convergence.
منابع مشابه
Pseudodifferential Operators And Nonlinear PDE
CONTENTS Introduction. 0. Pseudodifferential operators and linear PDE. §0.1 The Fourier integral representation and symbol classes §0.2 Schwartz kernels of pseudodifferential operators §0.3 Adjoints and products §0.4 Elliptic operators and parametrices §0.5 L 2 estimates §0.6 Gårding's inequality §0.7 The sharp Gårding inequality §0.8 Hyperbolic evolution equations §0.9 Egorov's theorem §0.10 M...
متن کاملA posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations
A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations Abstract This paper presents constructive a posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations (PDEs) on a bounded domain. This type of estimates plays an important role in the numerical verification of the...
متن کاملStanford Department of Mathematics Analysis & PDE seminar Dirichlet problem for elliptic operators with rough coefficients and L-harmonic measure
Sharp estimates for the solutions to elliptic PDEs in L∞ in terms of the corresponding norm of the boundary data follow directly from the maximum principle. It holds on arbitrary domains for all (real) second order divergence form elliptic operators −divA∇. The wellposedness of boundary problems in L, p < ∞, is a far more intricate and challenging question, even in a half-space. In particular, ...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملW 1,p ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS
Let Lε = −div ` A ` x ε ́ ∇ ́ , ε > 0 be a family of second order elliptic operators with real, symmetric coefficients on a bounded Lipschitz domain Ω in Rn, subject to the Dirichlet boundary condition. Assuming that A(x) is periodic and belongs to VMO, we show that there exists δ > 0 independent of ε such that Riesz transforms ∇(Lε)−1/2 are uniformly bounded on Lp(Ω), where 1 < p < 3+δ if n ≥ 3,...
متن کامل